A Comparative Study of Clustering Methods with Multinomial Distribution
نویسندگان
چکیده
In this paper, we study different discrete data clustering methods, which use the Model-Based Clustering (MBC) framework with the Multinomial distribution. Our study comprises several relevant issues, such as initialization, model estimation and model selection. Additionally, we propose a novel MBC method by efficiently combining the partitional and hierarchical clustering techniques. We conduct experiments on both synthetic and real data and evaluate the methods using accuracy, stability and computation time. Our study identifies appropriate strategies to be used for discrete data analysis with the MBC methods. Moreover, our proposed method is very competitive w.r.t. clustering accuracy and better w.r.t. stability and computation time.
منابع مشابه
Extraction of Respiratory Signal Based on Image Clustering and Intensity Parameters at Radiotherapy with External Beam: A Comparative Study
Background: Since tumors located in thorax region of body mainly move due to respiration, in the modern radiotherapy, there have been many attempts such as; external markers, strain gage and spirometer represent for monitoring patients’ breathing signal. With the advent of fluoroscopy technique, indirect methods were proposed as an alternative approach to extract patients’ breathing signals...
متن کاملClustering Images with Multinomial Mixture Models
In this paper, we propose a method for image clustering using multinomial mixture models. The mixture of multinomial distributions, often called multinomial mixture, is a probabilistic model mainly used for text mining. The effectiveness of multinomial distribution for text mining originates from the fact that words can be regarded as independently generated in the first approximation. In this ...
متن کاملIncremental Mixture Learning for Clustering Discrete Data
This paper elaborates on an efficient approach for clustering discrete data by incrementally building multinomial mixture models through likelihood maximization using the Expectation-Maximization (EM) algorithm. The method adds sequentially at each step a new multinomial component to a mixture model based on a combined scheme of global and local search in order to deal with the initialization p...
متن کاملExtracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملA Comparative Study of Generative Models for Document Clustering
Generative models based on the multivariate Bernoulli and multinomial distributions have been widely used for text classification. Recently, the spherical k-means algorithm, which has desirable properties for text clustering, has been shown to be a special case of a generative model based on a mixture of von Mises-Fisher (vMF) distributions. This paper compares these three probabilistic models ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1505.02324 شماره
صفحات -
تاریخ انتشار 2015